SHORT REPORTS

1'-METHYL-ZEATIN, AN ADDITIONAL CYTOKININ FROM PSEUDOMONAS SYRINGAE PV. SAVASTANOI*

ANTONIO EVIDENTE, GIUSEPPE SURICOT, NICOLA S. IACOBELLIST and GIACOMINO RANDAZZO

Dipartimento di Chimica Organica e Biologica, Università di Napoli, Via Mezzocannone 16, 80134 Napoli, Italy; †Istituto Tossine e Micotossine da Parassiti Vegetali del C.N.R., Via Amendola 197/F, 70126 Bari, Italy

(Revised received 20 June 1985)

Key Word Index—Pseudomonas syringae pv. savastanoi; cytokinin; phytohormones; adenine derivatives.

Abstract—The isolation and structural elucidation of 1'-methyl-zeatin, a novel cytokinin, is reported.

INTRODUCTION

The culture filtrate of *Pseudomonas syringae* pv. savastanoi NCPPB 640‡ contains at least four cytokinins [1, 2] when assayed according to the method described in ref. [3]. Three of the cytokinins have been identified as the new cytokinin 6-(4-hydroxy-1,3-dimethylbut-trans-2-enylamino)-9- β -D-ribofuranosylpurine (1), zeatin (2) and zeatin riboside (3). The fourth, an additional new cytokinin, has now been assigned the structure of 6-(4-hydroxy-1,3-dimethylbut-trans-2-enylamino)purine (1'-methyl-zeatin, 1'MeZ) (4).

RESULTS AND DISCUSSION

Compound 4, $[\alpha]_{25}^{25}$ – 52.6° (EtOH; c 0.13), gave UV absorption spectra [λ_{\max}^{EtOH} nm (e): 270 (11359); $\lambda_{\max}^{H_2O}$ nm (e): 269 (11842) and 275 (11912) at pH 7.0 and 10.0, respectively] characteristic for a N⁶-substituted adenine derivative [4]. Its mass spectrum (EI, 70 eV) exhibited peaks at m/z (rel. int.): 233 [M]⁺ (20), 216 (100), 202 (80), 174 (25), 162 (20), 160 (18), 148 (10), 136 (60) and 135 (50). The occurrence of ions at m/z 216, 202, 174 and 162 was consistent with a fragmentation pathway of a 1'-methyl derivative of zeatin [5].

Its ¹H NMR spectrum (Table 1) revealed the presence of two singlets at $\delta 8.22$ and 8.05, typical for a 6-substituted purine system [6], a complex doublet at $\delta 5.53$ and two broad singlets at $\delta 3.95$ and 1.78. Moreover, the presence of a doublet, due to a secondary methyl group, was observed at $\delta 1.36$; in fact, this latter signal collapsed

into a singlet upon irradiation of the multiplet present at δ 5.24 (H-1'). In this experiment we also observed the coupling of H-1' with the olefinic proton (H-2').

All the above data suggested that compound 4 is 1'methyl-zeatin.

In agreement with these findings, the ¹H NMR spectrum of compound 4 differed from that of compound 1, only in the absence of the signals assigned to the ribose moiety. Similarly the ¹H NMR data of 4 were very close to those of zeatin (2) (Table 1), except for the presence of the signal attributed to the secondary methyl group. In addition the olefinic proton, a broad triplet in the spectrum of zeatin, appeared as a complex doublet in the spectrum of 4. The ¹³C NMR spectrum of 4 (Table 2) indicated the presence of 11 carbons, the chemical shifts of which were in agreement with the proposed structure.

Finally, we showed that 4 was the aglycone of cytokinin 1, by the demonstration that the product present

	\mathbb{R}^1	R²
1	°′Me	β – D – ribosyl
2	Н	Н
3	Н	β -D-ribosyl
4	6′Me	Н

PHYTO 25:2-P 525

^{*}This work was supported by grants from the Italian National Research Council (C.N.R.). Special 'ad hoc' program 'Chimica Fine e Secondaria'. Subproject Ca.

[‡]National Collection Plant Pathogenic Bacteria, Harpenden, U.K.

Table 1. ¹H NMR spectral data of compounds 2 and 4 (270 MHz, CD₃OD as solvent and int. standard) (δ)

Н	2	4
2*	8.23 s	8.22 s
8*	8.05 s	8.05 s
1'	4.26 br d	5.24 m
2'	5.65 br t	5.53 br d
4' (2H)	3.98 br s	3.95 br s
5' (3H)	1.79 br s	1.78 br s
6' (3H)	_	1.36 d

J (Hz): 2, 4:2', 4' = 1.5; 2', 5' = 1.1; 2:1', 2' = 6.6; 4:1', 2' = 8.5; 1', 6' = 6.6.

*Assigned in agreement with literature data [6].

Table 2. ¹³C NMR chemical shifts of compound 4 (67.88 MHz, CD₃OD as solvent and int. standard)

С	δ	С	δ
2*	153.9	2′	127.8
4*	149.9	3'	138.3
5*	116.4	4′	68.0
6*	156.1	5′	21.8
8*	140.6	6′	14.1
ì'	45.5		

*Assignments made by reference to the data reported in the literature for adenine derivatives [7].

in the basic extract of an acid hydrolysate (0.5 M HCl, at 95° for 6 hr) of 1 had the same R_f values as natural 4, with which it chromatographed, in three different TLC

systems [silica gel, n-BuOH-HOAc-H₂O (4:1:1.6) and CHCl₃-EtOAc-MeOH (2:2:1); reverse phase H₂O-EtOH (1.5:1)].

All these results suggest structure 4 for the new cytokinin.

EXPERIMENTAL

Isolation. Compound 4 was obtained as described previously [1] by chromatographic fractionation of an EtOAC extract (514 mg) of a basified culture filtrate (34 l.) of pv. savastanoi. Cytokinin fractionation was performed by a combination of TLC on silica gel (Merck, Kieselgel 60, F₂₅₄, 0.25 and 2 mm) and on reverse phase (Stratocrom C-18, Whatman 0.2 mm). In particular, fractionation on silica gel (n-BuOH-HOAc-H₂O, 4:1:1.6) followed by purification on reverse phase plates (H₂O-EtOH, 1.5:1) yielded 1, chromatographically pure (13 mg), and 4 in mixture. A further purification on silica gel plates (CHCl₃-EtOAc-MeOH, 2:2:1) gave 4 as an oil (1.3 mg) which resisted crystallization.

Identification. Compound 4 was identified as 1'MeZ on the basis of ¹H and ¹³C NMR and MS. Results of analyses performed have been discussed above and are reported in Tables 1 and 2.

REFERENCES

- Surico, G., Evidente, A., Iacobellis, N. S. and Randazzo, G. (1985) Phytochemistry 24, 1499.
- Iacobellis, N. S., Surico, G., Evidente, A., Iasiello, I. and Randazzo, G. (1986) Phytopath. Med. (in press).
- Fletcher, R. A., Kallidumbill, V. and Steele, P. (1982) Plant Physiol. 69, 675.
- Scott, A. I. (1964) in Interpretation of the Ultraviolet Spectra of Natural Products (Barton, D. H. R. and Doering, W., eds)
 p. 197. Pergamon Press, Oxford.
- Porter, Q. N. and Baldas, J. (1971) in Mass Spectrometry of Heterocyclic Compounds (Weissberger, A. and Taylor, E. C., eds) p. 485. Wiley-Interscience, New York.
- Batterham, T. J. (1973) in NMR Spectra of Simple Heterocycles (Taylor, E. C. and Weissberger, A., eds) p. 295. Wiley-Interscience, New York.
- Jones, A. J., Grant, D. M., Winkley, M. W. and Robins, R. K. (1970) J. Am. Chem. Soc. 92, 4079.